Exploring dynamic self-adaptive populations in differential evolution

نویسنده

  • Jason Teo
چکیده

Although the Differential Evolution (DE) algorithm has been shown to be a simple yet powerful evolutionary algorithm for optimizing continuous functions, users are still faced with the problem of preliminary testing and hand-tuning of the evolutionary parameters prior to commencing the actual optimization process. As a solution, self-adaptation has been found to be highly beneficial in automatically and dynamically adjusting evolutionary parameters such as crossover rates and mutation rates. In this paper, we present a first attempt at self-adapting the population size parameter in addition to self-adapting crossover and mutation rates. Firstly, our main objective is to demonstrate the feasibility of self-adapting the population size parameter in DE. Using De Jong's F1-F5 benchmark test problems, we showed that DE with self-adaptive populations produced highly competitive results compared to a conventional DE algorithm with static populations. In addition to reducing the number of parameters used in DE, the proposed algorithm actually outperformed the conventional DE algorithm for one of the test problems. It was also found that that an absolute encoding methodology for self-adapting population size in DE produced results with greater optimization reliability compared to a relative encoding methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive

In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Self-Adaptive Differential Evolution for Dynamic Environments with Fluctuating Numbers of Optima

Despite the fact that evolutionary algorithms often solve static problems successfully, dynamic optimization problems tend to pose a challenge to evolutionary algorithms [21]. Differential evolution (DE) is one of the evolutionary algorithms that does not scale well to dynamic environments due to lack of diversity [35]. A significant body of work exists on algorithms for optimizing dynamic prob...

متن کامل

An Improved Self-adaptive Control Parameter of Differential Evolution for Global Optimization

Differential evolution (DE) is a simple, fast, and efficient evolutionary algorithm for global numerical optimization. The major advantage of DE is its self-adaptation in both search direction and step size of the differential mutation.. On the other hand, DE is good at exploring. The search space and locating the region of global minimum, but it is slow at exploitation of the solution. In orde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft Comput.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2006